The speed of PyPy

Maciej Fijatkowski

merlinux GmbH

Pycon 2010, February 20th 2010, Atlanta

»*

D, e

Maciej Fijatkowski The speed of PyPy




How fast is PyPy?

Maciej Fijatkowski The speed of PyPy



How fast is PyPy?

@ pretty fast, in places

@ slower than cpython in other places
@ overall, it depends

@ graphs

Maciej Fijatkowski The speed of PyPy



JIT - what’s that about?

Maciej Fijatkowski The speed of PyPy



JIT - what’s that about?

@ JIT is not a magical device!

Maciej Fijatkowski The speed of PyPy



JIT - what’s that about?

@ JIT is not a magical device!

@ removes bytecode overhead

@ removes frame overhead

@ can make runtime decisions

@ more classic optimization that can follow

Maciej Fijatkowski The speed of PyPy



@ python has advanced features (frame
introspection, arbitrary code execution,
overloading globals)

@ with JIT, you don’t pay for them if you don'’t
use them

@ however, you pay if you use them, but they
work

Maciej Fijatkowski The speed of PyPy



A piece of advice

@ don’t use advanced features if you don'’t
have to

Maciej Fijatkowski The speed of PyPy



Tracing JIT

@ compiler traces the actual execution of
Python program

@ then compiles linear path to assembler
@ example

@ mostly for speeding up loops and to certain
extent recursion

Maciej Fijatkowski The speed of PyPy



Removing frame overhead

+ z

X
Il
e

@ above has 5 frame accesses
@ they can all be removed (faster!)

Maciej Fijatkowski The speed of PyPy



Removing frame overhead

@ above has 5 frame accesses
@ they can all be removed (faster!)
@ this enables further optimizations

Maciej Fijatkowski The speed of PyPy



Removing object boxing

i=0
while i < 100:
i4=1

@ for each iteration we do a comparison and
addition

@ xxx integers on valuestack and xxx integers
in locals

@ all boxing can be removed

Maciej Fijatkowski The speed of PyPy



Variable access costs

@ local access costs nothing

@ global access is cheap, if you don’t change
global __dict__ too much XXX rephrase

Maciej Fijatkowski The speed of PyPy



Frame escapes

@ JIT normally removes frame overhead, but

@ calling sys._getframe (),
sys.exc_info ()

@ exception escaping
@ prevents a lot of optimizations

Maciej Fijatkowski The speed of PyPy



Shared dicts (aka hidden classes)

@ instance _ dict__ lookup becomes an
array lookup

@ if you're evil, it'll bail back to dict lookup

Maciej Fijatkowski The speed of PyPy



Shared dicts (aka hidden classes)

@ instance _ dict__ lookup becomes an
array lookup
@ if you're evil, it'll bail back to dict lookup

@ only for newstyle classes

Maciej Fijatkowski The speed of PyPy



@ dicts on types are version-controlled
@ this means method lookup can be removed

Maciej Fijatkowski The speed of PyPy



@ dicts on types are version-controlled

@ this means method lookup can be removed
@ ... if you don’t modify them too often

@ counters on classes are bad

Maciej Fijatkowski The speed of PyPy



Call costs

@ calls can be inlined

@ simple arguments are by far the best
@ avoid rargs and *xkwds

@ however, £ (a=3, b=c) isfine

Maciej Fijatkowski The speed of PyPy



Allocation patterns

@ PyPy uses a moving GC (like JVM, .NET,
etc.)

@ pretty efficient for usecases with a lot of
short-living objects

@ objects are smaller than on CPython

@ certain behaviors are different than on
CPython

Maciej Fijatkowski The speed of PyPy



@ no refcounting semantics

@ id(obj) can be expensive as it'’s a
complex operation on a moving GC

@ alarge list of new objects is a bad case
behavior

Maciej Fijatkowski The speed of PyPy



General rules

@ don't try to outsmart your compiler
@ simple is better than complex
@ metaprogramming is your friend

@ measurment is the only meaningful way to
check

Maciej Fijatkowski The speed of PyPy



@ long traces - tracing is slow
@ megamorphic calls

@ metaclasses

@ class global state

Maciej Fijatkowski The speed of PyPy



@ long traces - tracing is slow

@ megamorphic calls

@ metaclasses

@ class global state

@ years of optimizations against CPython

Maciej Fijatkowski The speed of PyPy



release end March
@ will contain a working JIT

@ will not speed up all cases
@ might eat all your memory

Maciej Fijatkowski The speed of PyPy



That’s all!

e Q&A
@ http://morepypy.blogspot.com

@ http://pypy.org
@ http://merlinux.eu

Maciej Fijatkowski The speed of PyPy



