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How fast is PyPy?
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How fast is PyPy?

@ pretty fast, in places

@ slower than cpython in other places
@ overall, it depends

@ graphs
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JIT - what’s that about?
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JIT - what’s that about?

@ JIT is not a magical device!
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JIT - what’s that about?

@ JIT is not a magical device!

@ removes bytecode overhead

@ removes frame overhead

@ can make runtime decisions

@ more classic optimization that can follow
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@ python has advanced features (frame
introspection, arbitrary code execution,
overloading globals)

@ with JIT, you don’t pay for them if you don'’t
use them

@ however, you pay if you use them, but they
work
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A piece of advice

@ don’t use advanced features if you don'’t
have to
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Tracing JIT

@ compiler traces the actual execution of
Python program

@ then compiles linear path to assembler
@ example

@ mostly for speeding up loops and to certain
extent recursion
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Removing frame overhead
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@ above has 5 frame accesses
@ they can all be removed (faster!)
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Removing frame overhead

@ above has 5 frame accesses
@ they can all be removed (faster!)
@ this enables further optimizations
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Removing object boxing

i=0
while i < 100:
i4=1

@ for each iteration we do a comparison and
addition

@ xxx integers on valuestack and xxx integers
in locals

@ all boxing can be removed
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Variable access costs

@ local access costs nothing

@ global access is cheap, if you don’t change
global __dict__ too much XXX rephrase
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Frame escapes

@ JIT normally removes frame overhead, but

@ calling sys._getframe (),
sys.exc_info ()

@ exception escaping
@ prevents a lot of optimizations
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Shared dicts (aka hidden classes)

@ instance _ dict__ lookup becomes an
array lookup

@ if you're evil, it'll bail back to dict lookup
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Shared dicts (aka hidden classes)

@ instance _ dict__ lookup becomes an
array lookup
@ if you're evil, it'll bail back to dict lookup

@ only for newstyle classes
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@ dicts on types are version-controlled
@ this means method lookup can be removed
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@ dicts on types are version-controlled

@ this means method lookup can be removed
@ ... if you don’t modify them too often

@ counters on classes are bad
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Call costs

@ calls can be inlined

@ simple arguments are by far the best
@ avoid rargs and *xkwds

@ however, £ (a=3, b=c) isfine
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Allocation patterns

@ PyPy uses a moving GC (like JVM, .NET,
etc.)

@ pretty efficient for usecases with a lot of
short-living objects

@ objects are smaller than on CPython

@ certain behaviors are different than on
CPython
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@ no refcounting semantics

@ id(obj) can be expensive as it'’s a
complex operation on a moving GC

@ alarge list of new objects is a bad case
behavior
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General rules

@ don't try to outsmart your compiler
@ simple is better than complex
@ metaprogramming is your friend

@ measurment is the only meaningful way to
check
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@ long traces - tracing is slow
@ megamorphic calls

@ metaclasses

@ class global state
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@ long traces - tracing is slow

@ megamorphic calls

@ metaclasses

@ class global state

@ years of optimizations against CPython
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release end March
@ will contain a working JIT

@ will not speed up all cases
@ might eat all your memory
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That’s all!

e Q&A
@ http://morepypy.blogspot.com

@ http://pypy.org
@ http://merlinux.eu
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