
The speed of PyPy

Maciej Fijałkowski

merlinux GmbH

Pycon 2010, February 20th 2010, Atlanta

Maciej Fijałkowski The speed of PyPy

How fast is PyPy?

pretty fast, in places
slower than cpython in other places
overall, it depends
graphs

Maciej Fijałkowski The speed of PyPy

How fast is PyPy?

pretty fast, in places
slower than cpython in other places
overall, it depends
graphs

Maciej Fijałkowski The speed of PyPy

JIT - what’s that about?

JIT is not a magical device!
removes bytecode overhead
removes frame overhead
can make runtime decisions
more classic optimization that can follow

Maciej Fijałkowski The speed of PyPy

JIT - what’s that about?

JIT is not a magical device!

removes bytecode overhead
removes frame overhead
can make runtime decisions
more classic optimization that can follow

Maciej Fijałkowski The speed of PyPy

JIT - what’s that about?

JIT is not a magical device!
removes bytecode overhead
removes frame overhead
can make runtime decisions
more classic optimization that can follow

Maciej Fijałkowski The speed of PyPy

The main idea

python has advanced features (frame
introspection, arbitrary code execution,
overloading globals)
with JIT, you don’t pay for them if you don’t
use them
however, you pay if you use them, but they
work

Maciej Fijałkowski The speed of PyPy

A piece of advice

don’t use advanced features if you don’t
have to

Maciej Fijałkowski The speed of PyPy

Tracing JIT

compiler traces the actual execution of
Python program
then compiles linear path to assembler
example
mostly for speeding up loops and to certain
extent recursion

Maciej Fijałkowski The speed of PyPy

Removing frame overhead

x = y + z

above has 5 frame accesses
they can all be removed (faster!)

this enables further optimizations

Maciej Fijałkowski The speed of PyPy

Removing frame overhead

x = y + z

above has 5 frame accesses
they can all be removed (faster!)
this enables further optimizations

Maciej Fijałkowski The speed of PyPy

Removing object boxing

i = 0
while i < 100:

i += 1

for each iteration we do a comparison and
addition
xxx integers on valuestack and xxx integers
in locals
all boxing can be removed

Maciej Fijałkowski The speed of PyPy

Variable access costs

local access costs nothing
global access is cheap, if you don’t change
global __dict__ too much XXX rephrase

Maciej Fijałkowski The speed of PyPy

Frame escapes

JIT normally removes frame overhead, but
calling sys._getframe(),
sys.exc_info()

exception escaping
prevents a lot of optimizations

Maciej Fijałkowski The speed of PyPy

Shared dicts (aka hidden classes)

instance __dict__ lookup becomes an
array lookup
if you’re evil, it’ll bail back to dict lookup

only for newstyle classes

Maciej Fijałkowski The speed of PyPy

Shared dicts (aka hidden classes)

instance __dict__ lookup becomes an
array lookup
if you’re evil, it’ll bail back to dict lookup
only for newstyle classes

Maciej Fijałkowski The speed of PyPy

Version tags

dicts on types are version-controlled
this means method lookup can be removed

... if you don’t modify them too often
counters on classes are bad

Maciej Fijałkowski The speed of PyPy

Version tags

dicts on types are version-controlled
this means method lookup can be removed
... if you don’t modify them too often
counters on classes are bad

Maciej Fijałkowski The speed of PyPy

Call costs

calls can be inlined
simple arguments are by far the best
avoid *args and **kwds

however, f(a=3, b=c) is fine

Maciej Fijałkowski The speed of PyPy

Allocation patterns

PyPy uses a moving GC (like JVM, .NET,
etc.)
pretty efficient for usecases with a lot of
short-living objects
objects are smaller than on CPython
certain behaviors are different than on
CPython

Maciej Fijałkowski The speed of PyPy

Differencies

no refcounting semantics
id(obj) can be expensive as it’s a
complex operation on a moving GC
a large list of new objects is a bad case
behavior

Maciej Fijałkowski The speed of PyPy

General rules

don’t try to outsmart your compiler
simple is better than complex
metaprogramming is your friend
measurment is the only meaningful way to
check

Maciej Fijałkowski The speed of PyPy

Problems

long traces - tracing is slow
megamorphic calls
metaclasses
class global state

years of optimizations against CPython

Maciej Fijałkowski The speed of PyPy

Problems

long traces - tracing is slow
megamorphic calls
metaclasses
class global state
years of optimizations against CPython

Maciej Fijałkowski The speed of PyPy

Future

release end March
will contain a working JIT
will not speed up all cases
might eat all your memory

Maciej Fijałkowski The speed of PyPy

That’s all!

Q & A
http://morepypy.blogspot.com
http://pypy.org
http://merlinux.eu

Maciej Fijałkowski The speed of PyPy

